2013 - 2014

Quarterly Science Benchmark Assessment (QSBA)

Chemistry

Second Quarter

Miami-Dade County Public Schools

Curriculum and Instruction

Division of Mathematics, Science, and Advanced Academic Programs

INTRODUCTION

The Chemistry Quarterly Science Benchmark Assessments (QSBA) were created with the objective of assessing student performance in order to improve the quality of student learning and enhance instructional practices by using data to make curricular decisions.

The Chemistry QSBAs are designed to be administered at the start of the school year, after each nine-week period (quarter) of instruction, and at the end of the school year, focusing its questions on the scientific content delineated by the Florida Department of Education (FLDOE) Next Generation Sunshine State Standards (NGSSS) and the specific benchmarks outlined by the Chemistry course description.

The Division of Mathematics, Science, and Advanced Academic Programs highly recommends the administration of the QSBAs to be concurrent with the administration of Baseline Assessments, Fall Interim Assessments, and Winter Interim Assessments.

The Pre-Test Assessment encompasses all the main concepts and ideas of the Chemistry course, while each Quarterly Assessment addresses the main benchmarks of each quarter specific to the Topics found in the Chemistry District Pacing Guide.

The NGSSS benchmarks pertinent to each course description have been grouped according to content and placement within the District Pacing Guides in order to facilitate the analysis of each assessment.

Teachers are encouraged to debrief the results of each of the QSBAs with students and use individual test results to focus on the benchmark(s) on which a student needs further instruction. This review will assist teachers in targeting their instruction.

Teachers must use the Thinkgate Technology Platform (<u>http://www.thinkgate.net/FLMiamiDadeSplash/TGLogin.aspx</u>) to print answer sheets, scan, score, and produce reports. This process will enable teachers to obtain student data in order to identify strengths and weaknesses and allow teachers to target instruction and monitor progress.

Additional information regarding the use of Thinkgate can be found in the Interim Assessment section of the department of Assessment, Research, and Data Analysis (<u>http://oada.dadeschools.net/IAP/IAP.asp</u>)

This document was created by the Division of Mathematics, Science and Advanced Academic Programs from Districtdeveloped questions and may include questions adapted from previously released tests with permission from the Massachusetts Department of Elementary and Secondary Education and the Pennsylvania Department of Education

This document cannot be reproduced without express written permission from Miami-Dade County Public Schools.

				Г																			1									ε		
		18	84		1	Helium Helium	4.003	10	Neon	Neon 20.180	18	Ar	Argon 39.948	36	Υ	Krypton 83.80	54	Xe	Xenon 131.29	86	R	Radon 222		nmetals			11	Lu	174.967	103	ב	260.105		
	Representative Elements				1		6A 7A 8 8	6	ш	Fluorine 18.998	17	0	Chlorine 35.453	35	Ъ	Bromine 79.904	53	_	lodine 126.905	85	At	Astatine 210		Nor			70	٩۲	173.04	102	٩	259.101		
					0	<u>م</u>		œ	0	Oxygen 15.999	16	S	Sulfur 32.06	34	Se	Selenium 78.96	52	Те	Tellurium 127.60	84	Ъ	Polonium 208.982	<			69	E T	168.934	101	Md	endelevium 258.099			
					L T	0 v	Αc	7	z	Nitrogen 14.007	15	٩	hosphorus 30.974	33	As	Arsenic 74.922	51	sb	Antimony 121.757	83	Ш.	Bismuth 208.980		Metals			89	ш	167.26	90	E E	257.095		
					V F	4 •	4 A	9	ပ	Carbon 12.011	14	Si	Silicon P 28.086	32	Ge	ermanium 72.61	50	Sn	Tin 118.710	82	Ъb	Lead 207.2					67	٩	164.930	66	Es	252.083		
					¢	ν •	3A	5	ш	Boron 10.81	13	A	uminum 26.982	31	Ga	Sallium G	49	٩	Indium 114.82	81	F	hallium 04.383					66	<u>S</u>	sprosium 162.50	86	C,	110mium El		
												12	2B AI	30	Zn	Zinc 0	48	л С	admium 12.411	80	Нg	lercury T 200.59 2					65	Tb Tb	erbium Dy 58.925	97	Ъ.	erkelium Ca		
(00												11	18	29	Cr Dr	opper 3.546	47	٩g	07.868 1	62	Au	Gold N 96.967					64	b D	57.25 1	8	َن بر	17.070 2		
= 12.00												10	-	28	Z	ickel C 3.693 6	46	- pd	adium 5 06.42 10	78	<u>-</u>	tinum (63	<u>.</u> 	opium Gao	95	ہو بو	3.061 2/		
¹² 6C																ző		-	10 T			Pla 19			1			ш,	n n			Ame 24		
sed on													6	88	27	ပိ	Cobalt 58.933	45	ВЧ	Rhodium 102.906	17	<u>-</u>	Iridium 192.22	109	Meitnerium (268)			62	Sm	150.36	94	Pu	244.064	
(ba												ø		26	Бе	lron 55.847	44	Вu	Ruthenium 101.07	76	SO	Osmium 190.2	108	Hassium (265)			61	Bm	Promethium 144.913	8	d	237.048		
			umber		ass							7	7B	25	ПЛ	Manganese 54.938	43	ц	fechnetium 98	75	Re	Rhenium 186.207	107	Bohrium (264)	Metals		60	N	teodymium 144.24	92	D	Uranium 238.029		
			Atomic nu	Symbol	Atomic M				als	als		9	6B	24	ŗ	hromium 1 51.996	42	Mo	olybdenum 1 95.94	74	≥	lungsten 183.85	106	Sg aborgium (263)	nsition	series	59	ዾ	140.908	91	Ра	otactinium 231.036	ries	
		;			.086						0	2))		5	5B	23	>	50.942	41	٩N	iobium Mc 92.906	73	Ta	ntalum 1 80.948	105		ner Traı	nthanide	58	e S	erium Pra	06
			_	<i>a</i>	5				Met							<u>د ح</u>			× ×		-	н с 1			<u> </u>	La	_		<u> </u>		_		Ac	
									nsition			4	4B	ឌ	F	Titaniu 47.88	40	Z	Zirconiu 91.224	72	Ť	Hafniu 178.49	104	Rutherforc (261)	/		-							
									Tra	2	-	ო	3B	21	Sc	Scandium 44.956	39	~	Yttrium 88.906	57	La	Lanthanum 138.905	68	Actinium 227.028										
					2	2A		4	Be	Beryllium 9.012	12	Ma	Magnes lum 24.305	20	Ca	Calcium 40.078	38	S	Strontium 87.62	56	Ba	Barium 137.327	88	Ra dium 226.025										
	iroup	-	1A	-	I	ydrogen		e		Lithium 6.941	÷	Na	Sodium 22.990	19	¥	otassium 39.098	37	Вb	ubidium 85.468	55	S	Cesium 132.905	87	Fr ²²³										
	G				-	Ĩ			2	-		e	<i>a,</i>		4	ĕ.		5	Ċ,		9			7	J									

Chemistry Reference Sheet

Chemistry Second Quarter QSBA Department of Mathematics and Science

Periodic Table of the Elements

NAME:

Read each question thoroughly and mark your responses on the answer sheet provided.

- 1. If the attractive forces among solid particles are less than the attractive forces between the solid and a liquid, the solid will?
 - A. Begin the process of melting to form a liquid
 - B. Probably form a new precipitate as its crystal lattice is broken and re-formed
 - C. Particles will dissolve and be pulled away from the crystal lattice by the liquid molecules
 - D. Will not be affected because attractive forces within the crystal lattice are too strong for the dissolution to occur
- 2. Which of these is an example of an exothermic chemical process?
 - A. Evaporation of water
 - B. Melting ice
 - C. Photosynthesis of glucose
 - D. Combustion of gasoline
- 3. How many moles of carbon-12 are contained in exactly 6 grams of carbon-12?
 - A. 0.5 moles
 - B. 2.0 moles
 - C. 3.01 x 10²³ moles
 - D. 6.02×10^{23} moles
- 4. For a substance to change phases, the amount of internal energy must change. Water exists in three phases: liquid, solid, and gas. Which of the following lists the phases in order of increasing total energy?
 - A. Gas, liquid, solid
 - B. Solid, gas, liquid
 - C. Liquid, gas, solid
 - D. Solid, liquid, gas
- 5. Two elements in a molecule have the same electronegativity values. Which of the following most likely holds the element together and why?
 - A. An ionic bond, because electrons transfer from one element to the other
 - B. A nonpolar covalent bond, because the elements share electrons equally
 - C. A polar covalent bond, because the elements do not share electrons equally
 - D. An intermolecular force, because the elements do not form a chemical bond

6. The graph below represents a sample of a pure substance starting as a gas with uniform cooling.

Which of the following statements is correct about the phase and energy changes of the substance?

- A. In segment BC the substance changes from a liquid to a solid and the potential energy increases.
- B. In segment CD the substance changes from a liquid to a solid and the kinetic energy decreases ____
- C. In segment DE the substance changes from a liquid to a solid and the kinetic energy decreases _____
- D. In segment DE The substance changes from a liquid to a solid and the potential energy increases
- 7. Which type of compound has a high melting point, conducts electricity in the molten phase, and tends to be soluble in water?
 - A. ionic
 - B. metallic
 - C. covalent
 - D. molecular
- 8. What is the empirical formula for $C_4Br_2F_8$?
 - A. CBrF
 - B. C_2BrF_4
 - C. C_2BrF_6
 - D. $C_8Br_8F_8$

- 9. Which of the following equations represent the Law of Conservation of Mass?
 - A. $H_2O \rightarrow H_2 + O_2$
 - B. $2H + 2O \rightarrow 2H_2O$
 - C. $2H_2O \rightarrow 2H_2 + O_2$
 - D. $H_2 + O_2 \rightarrow H_2O + H_2O_2$
- 10. The name for NH_4F is?
 - A. Ammonia fluoride
 - B. Ammonium fluoride
 - C. Ammonium fluorine
 - D. Nitrogen tetrahydrogen fluoride
- 11. What is the mass of one mole of helium gas?
 - A. 2 grams
 - B. 4 grams
 - C. 8 grams
 - D. 22 grams
- 12. Clara carries a glass of ice water outside on a hot day. She sets it down and rushes inside to answer the phone. When she returns, the ice has melted. What is the best explanation for what happened to the drink?
 - A. The warm air carried convection heat currents, which melted the ice molecules
 - B. The ultraviolet rays from the Sun heated the molecules, decreasing their kinetic energy and increasing their attraction
 - C. The ice molecules passed their cold energy to the water molecule, resulting in the liquid state
 - D. The ice molecules absorbed energy from their surroundings, gained kinetic energy, and overcame the forces holding them in the solid state
- 13. Which of the following chemical equations is balanced correctly?
 - A. $C_6H_6 + O_2 \rightarrow 2CO_2 + 3H_2O$
 - B. $CS_2 + 3Cl_2 \rightarrow CCl_4 + S_2Cl_2$
 - C. $B_2O_3 + 2C \rightarrow B_4C + CO$
 - D. $CI_2 + NaI \rightarrow 2NaCI + I_2$

14. What is the percentage of aluminum in aluminum oxide (Al₂O₃)

- A. 47%
- B. 48%
- C. 53%
- D. 54%

15. What is the completed balanced reaction for the replacement reaction AI + H₂SO₄?

A. AI + $H_2SO_4 \rightarrow AISO_4 + H_2$

B. AI + $H_2SO_4 \rightarrow AI_2S_3 + H_2O$

C. 2 AI + $H_2SO_4 \rightarrow AI_2S_3 + 2O_2 + H_2$

D. 2 AI + $3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 3H_2$

16. Which is the correct formula for Iron (III) sulfate?

- A. $Fe_3(SO_4)$
- B. FeSO₄
- C. $Fe_2(SO_4)_3$
- D. $Fe_2(SO_3)_3$
- 17. How many grams of oxygen are required for the complete combustion of 4.00 grams of methane (CH₄) in the following equation?

$\text{CH}_{4} + 2\text{O}_{2} \rightarrow \text{CO}_{2} + 2\text{H}_{2}\text{O}$

- A. 4.00 g
- B. 8.00 g
- C. 16.0 g
- D. 32.0 g

18. Which of the following is an intermolecular force?

- A. Hydrogen bond
- B. Covalent bond
- C. Metallic bond
- D. Ionic bond

19. Which of the following correctly pairs a phase of matter with its description?

- A. Solid: particles have no motion
- B. Liquid: Particles expand to fill any container in which they are placed
- C. Gas: particles have higher amounts of energy than when in the liquid phase
- D. Liquid: particles are more strongly attached to one another than when in the solid phase

- 20. During a series of experiments, a chemist found that a particular compound has the empirical formula of C_2H_5 and a molecular mass of 58.12 g/mol. What is the molecular formula of this compound?
 - A. CH₄
 - $B. \ C_2H_5$
 - $C. \ C_4 H_{10}$
 - D. $C_{18}H_{40}$

21. Which of the following is the formula for ammonium hydroxide?

- A. AI_2O_3
- $B. \ AmO_2$
- C. NH₃OH
- D. NH₄OH
- 22. Chemical reactions occur around us every day. Combustion releases the carbon stored in fossil fuels (e.g. coal, oil, natural gases) into the atmosphere as carbon dioxide gas. Which of the following equations represent this process?
 - A. $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
 - B. $CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$
 - C. $CaCO_3 + HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$
 - D. NaHCO₃ + HC₂H₃O₂ \rightarrow NaC₂H₃O₂ + H₂O + CO₂
- 23. Which type of reaction is represented by the following equation?

$2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$

- A. synthesis
- B. decomposition
- C. single displacement
- D. double displacement

24. What type of reaction is represented by the figure below?

$\textbf{SO}_3 \textbf{+} \textbf{H}_2\textbf{SO}_4 \rightarrow \textbf{H}_2\textbf{S}_2\textbf{O}_7$

- A. synthesis
- B. decomposition
- C. single displacement
- D. double displacement

25. Which of the following statements describes all exothermic reactions?

- A. Exothermic reactions form gases
- B. Exothermic reactions require a catalyst
- C. The energy of the reactants is lower than the energy of the products
- D. The energy of the reactants is higher than the energy of the products